

Effective from Session: 2020-21										
Course Code	BS541	Title of the Course	Medical Microbiology	L	Т	Р	С			
Year	П	Semester	III	3	1	0	4			
Pre-Requisite	UG with Biological Science									
Course Objectives	To introduce basic principles and application relevance of clinical disease. It covers all biology of bacteria, viruses and other nathogens related with infectious diseases in humans									

	Course Outcomes									
CO1	Gain information about the concepts of medical microbiology and gain knowledge on medically important micro-organisms, classification and									
	normal flora of human body.									
CO2	Gain knowledge of diseases and types of infections; mechanism of microbial pathogenesis; endo and exotoxins; sample collection and									
	identification.									
CO3	Understand Systematic Microbiology; diagnosis, identification and prevention of pathogenic microorganisms.									
CO4	Gain knowledge on Water borne infections caused by bacteria.									
CO5	Gain knowledge on Nosocomial infections and various chemotherapeutic agents and their									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Principles of Medical Microbiology	Classification of medically important micro-organisms. Normal flora of human body– Origin of normal flora, role of the resident flora, effect of antimicrobial agents on normal flora, factors influencing normal flora (Skin, conjunctiva, nose, nasopharynx, sinuses, mouth, upper respiratory tract, intestinal tract, urogenital tract).	8	CO-1
2	Clinical conditions and diagnosis	Factors that influence pathogenicity; Type of infections, source of infections, different modes/means of infections; Diagnostic microbiology – Types of specimen, specimen collection, transportation of specimen, processing; Laboratory diagnosis- haematology, biochemistry, microbiology, serology, radiology and other special methods.	8	CO-2
3	Systematic Microbiology	Detailed study of morphology, cultural characteristics, antigenic structure, pathogenesis, epidemiology, prevention and treatment of the following bacterial pathogens. Air borne infections caused by bacteria–Haemolytic streptococci, Pneumococci, Corynebacterium diphtheriae, Mycobacterium spp., Neisseria meningitidis, Haemophilus influenzae. Sexually transmitted diseases caused by bacteria, Treponema pallidum, Neisseria gonorrhoeae.	8	CO-3
4	Water borne infections	<i>E. coli, Salmonella typhi, Shigella dysenteriae, Vibrio cholera</i> ; Wound infections caused by bacteria – Staphylococcus aureus, Clostridium tetani, Pseudomonas; Important fungal diseases and their prevention.	8	CO-4
5	Nosocomial infections & Therapies	Factors that influence hospital infection, hospital pathogens, route of transmission, investigation, prevention and control. Preventive Measures: Antibiotics and chemotherapeutic agents-drug resistance and antibiotic policy; Epidemiology and control of community infection. Alternative and Complimentary medicine-Chinese, European and Indian (Siddha, Ayurveda, Unani etc).	8	CO-5
Reference	e Books:			
1. C	haechter M. Medoff G.	and Eisenstein BC. (1993) Mechanism of Microbial Diseases 2nd edition.		
2. W	Villiams and Wilkins, B	altimore.		
3. D	avid Greenwood, Richa	ard CD, Slack, John Forrest Peutherer. (1992) Medical Microbiology. 14th edition. ELBS with Chu	urchill Livir	igstone
e-Learni	ng Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	1			1	3	1	2	3			
CO2	3	1			1	3	1	2	3		2	
CO3	3	1				3	1	2	3			
CO4	3	1				3	1	2	3			
CO5	3	1		1	1	3	1	3	3		3	

Effective from Session: 2020-21										
Course Code	BS542 Title of the Course		Fundamentals of Infection & Immunity	L	Т	Р	С			
Year II Semester			III	3	1	0	4			
Pre-Requisite	UG in Biological Science	Co-requisite								
Course Objectives	The objective of the course mechanism of their working immune system related diso health and contributing to di	is to apprise the students about The course also deals with in rders. The students will be abuse asease.	at components associated with immune system mplications of deregulation of basic regulat le to describe the roles of the immune system	em and ory net m in bo	l molect tworks t oth mai	alar that leac ntaining	1 to g			

	Course Outcomes
CO1	The student will learn the fundamental principles of immune response including molecular, biochemical and cellular basis of immune
	homeostasis
CO2	The course will aid in understanding various aspects of immunological response and how its triggered and regulated.
CO3	The student will learn and understand the rationale behind various assays used in immunodiagnosis of diseases and will be able to transfer
	knowledge of immunology in clinical scenario.
CO4	The course will aid in understanding the principles of Graft rejection, Auto immunity and Antibody based therapy.
CO5	The student will develop the capacity for problem-solving about immune responsiveness, knowledge of the pathogenesis of diseases
	and designing of immunology-based interventions for effective treatment.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamentals of Immunology	Cells and organs of immunity: Memory, specificity, diversity, self vs. non-self- discrimination, Structure of primary and secondary lymphoid organs, Cell mediated vs. humoral immunity, T and B-lymphocytes; Nature of antigen and antibody: Antigen vs. Immunogen, Structure of antibody: constant and variable regions, Fab and Fc; isotype, allotype and idiotype; Abzymes	8	CO-1
2	Antigen-antibody interactions and its measurement	Direct binding assays, Agglutination and precipitation, radioimmunoassay and ELISA, fluorescence analysis, Hybridoma technology, applications of monoclonal antibodies in biomedical research, clinical diagnosis and treatment.	8	CO-2
3	Generation of diversity in the immune response	Clonal selection theory-concept of antigen specific receptors, genes encoding antigen specific receptors on T and B-lymphocytes, genetic rearrangement, class switch, Comparison of receptors and B and T lymphocytes.	8	CO-3
4	Differentiation of B and T lymphocyte	Activation of T cells and B cells by antigen: Antigen processing, Antigen presentation to T cells, Products and factors released by T cell activationinterleukins, interferons, B cell activating factors, T cell and B cell interactions leading to antibody synthesis. Central role of major histocompatibility complex (MHC), genes and products in immune response: T cell recognition of antigen and MHC products, Structure of MHC gene complex and its products polymorphism of MHC gene products, Associated MHC functions-allograft, graft vs. host and mixed leucocyte responses.	8	CO-4
5	Tolerance vs. activation of immune response	Complement- components of classical and alternative pathways. Hypersensitivity: Types I, II, III and IV responses. Autoimmunity. Host Immune Response against intracellular and extracellular microbes; Principles and strategy for developing vaccines	8	CO-5
Referen	ce Books:			
1. I	van M. Roit. (1994) Essentia	Immunology - Blackwell Scientific Publications, Oxford.		
2. J 3. H	aneway travers. (1997). Imm Biology Ltd., London, New Y	uno biology - The immuno system in health and disease 3rd edition Current ork		
4. I	mmunology: Kuby			
5. I	nstant Notes : Lydyard, Whe	lan, Fanger		
e-Lea	rning Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	1				3		1		3		
CO2	3	1				3		1		3	3	
CO3	3	1				3		1		3		
CO4	3	1				3		1		3		
CO5	3	1				3		1		3	3	
			1 I ou	Correlation	n. 2 Modor	oto Comula	Home 2 Curk	stantial Car	malation			

Effective from Session: 2020-21										
Course Code	BS543	Title of the Course	Recombinant DNA Technology	L	Т	Р	С			
Year	II	Semester	III	3	1	0	4			
Pre-Requisite	Pre-Requisite UG in Biological Science Co-requisite									
Course Objectives	The objectives of this course are to develop the understanding of Genetic Manipulations and introduce the concepts of different Enzymes. Gene Cloping and its expression and other techniques used in genetic engineering.									

	Course Outcomes
CO1	The students will be able to design experiments related to different enzymes used in genetic engineering for DNA manipulations.
CO2	The students will be able to describe different types of plasmid vectors and their characteristics.
CO3	The students will be able to discuss characteristics of phage and yeast cloning vectors.
CO4	The students will be able to explain creation methods and selection parameters of different gene libraries.
CO5	The students will be able to explain the principle and applications of sequencing techniques, mutagenesis, gene silencing, and amplification of
	DNA.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Restriction endonucleases	Class I, II & III restriction enzymes, Nomenclature, Isoschizomers, Heterohypekomers, Unit of restriction enzymes, Restriction digestion: partial and complete, Star activity; Homopolymer tailing, Synthetic Linkers, Adaptors; Roles of DNA ligase, T4 DNA polymerase, Alkaline phosphatase, Reverse transcriptase in cloning.	8	CO-1
2	Plasmids	Plasmid size range, Plasmid classification on basis of phenotypic traits: Cryptic, Fertility, Resistance, Bacteriocinogenic, Degradative, Virulence; Conjugative / non conjugative plasmids; Relaxed and stringent control of copy number; Plasmid incompatibility; Plasmid host range, Mobilizable plasmids and Triparental mating; Plasmid as cloning vector (recombinant plasmids): Properties of ideal plasmid cloning vectors, Plasmid vectors for E. coli and Agrobacterium; Transcriptional and translational fusion vectors; Selectable markers; Reporter genes.	8	CO-2
3	Cloning vectors	Phage lambda vector, <i>In vitro</i> packaging, Insertional and replacement vectors; Cosmid vectors; M13 phage; Phagemids; Yeast as cloning vector: Basic principles of development of yeast vectors, 2µ plasmid, YEP, YRP YCP, YIP; Artificial chromosomes: YACs, BACs and PACs.	8	CO-3
4	Basic Techniques - I	Gene bank / Genomic library and cDNA library construction; Overview of techniques for recombinant selection and screening: Functional and nutritional complementation, Colony/ plaque Immunological screening, HART, HAT.	8	CO-4
5	Basic Techniques - II	Rapid DNA sequencing techniques: Sanger method, Maxam and Gilbert procedure, automated DNA sequencing, pyrosequencing; Genomics: High throughput Sequencing: Microarray; Principle & applications of PCR: RT PCR, Inverse PCR, RACE, Degenerate PCR, Real time PCR, Scorpion PCR, Applications of PCR in gene cloning, TA cloning, pathogen diagnostics, environmental monitoring; Site directed mutagenesis; Antisense RNA technology and its applications.	8	CO-5
Refere	nce Books:			
1.	Freifelder D (2012). I	Molecular Biology, 5th edition. Narosa Publishing House, India		
2.	Brown, TA (2020) Ge	ene Cloning and DNA Analysis: An Introduction, 8th edition. John Wiley & Sons		
3.	Old & Primrose (198	0). Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California	rnia Press	
4.	Rastogi & Pathak (20	09). Genetic Engineering, Oxford University Press.		
e-Lea	arning Source:			

				Course Ar	ticulation M	latrix: (Maj	oping of CO	s with POs	and PSOs)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	1				3		1		3		
CO2	3	1				3		1		3		
CO3	3	1				3		1		3		
CO4	3	1				3		1		3		
CO5	3	1		1	2	3	1	1		3		

Effective from Session: 2020-21										
Course Code	BS544	Title of the Course	Virology & Biosafety		Т	Р	С			
Year	II	Semester	III	3	1	0	4			
Pre-Requisite	UG in Biological Science	Co-requisite								
Course Objectives	This course is designed to intro understanding of infection proc modification.	duce the structure of viruses, j esses at the molecular level; in	provide knowledge on fundamentals ntroduce a concept of biosafety agai	of vir nst inf	ology; lection of	Develop or genet) ic			

	Course Outcomes								
CO1	Know how viruses are classified, diverse viral architecture and genome structure and know the methods used in studying them.								
CO2	Understand the architecture of plant viruses and their genomes, gene expression, mode of replication and transmission.								
CO3	Understand the architecture of animal viruses and their genomes, gene expression, mode of replication, the intricate interaction between								
	viruses and host immune cells and pathogenesis of virus-induced diseases and oncogenesis and know about new and emerging animal viruses								
	as: Ebola Virus, Zika Virus, SARS and SARS-CoV2								
CO4	Understand the replication and growth of bacteriophages and lysogenic switch, study other virus-related structures and evolution of viruses.								
CO5	Assess the proper use of biological containment, and be introduced to safely conduct research, and bioethics in research, identify the role of								
	the biosafety professional in biomedical research laboratories.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	General Virology	Brief outline of virology; Discovery and origin of virus; Early development of virology– nomenclature - classification and taxonomy of viruses - based on host, nucleic acids and structure; Concept of ICTV nomenclature and classification of viruses (as per 9th Edition, 2008); Detection and isolation of viruses.	8	CO-1
2	Plant Viruses	Effects of viruses on plants: Morphological, histological and physiological changes; Transmission of plant viruses: a. through vectors- insects, nematodes and fungi b. without vectors- contact, seed and pollens; Life cycles of plant viruses– TMV, Cauliflower Mosaic Virus.	8	CO-2
3	Animal viruses	Retro virus-HIV; Hepatitis viruses–HBV, Influenza virus; Polio virus: General characters, life cycle, pathogenicity and diseases. Immunologic responses of the viruses in Animals; Oncogenic viruses: Virus induced cell transformation and oncogenesis. New and Emerging Animal Viruses: Ebola Virus, Zika Virus, SARS and SARS-CoV2	8	CO-3
4	Bacteriophages, Evolution of viruses and other viral types	Replication of single and double stranded nucleic acids of bacterial viruses, Onestep growth curves of bacteriophages, structure and genetics of phage lambda. Evolution of viruses and brief account of other viral types: Evolution of viruses; Virus related structures – viroids and prions; Satellite RNAs, Virusoids.	8	CO-4
5	Biosafety and Bioethics	Historical Backround; Introduction to Biological Safety Cabinets; Primary Containment for Biohazards; Biosafety Levels; Biosafety guidelines - Government of India; Definition of GMOs; Roles of Institutional Biosafety Committee, RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication. Bioethics: Introduction, necessity and limitation; Ethical conflicts in Biotechnology; Different paradigms of bioethics.	8	CO-5
Referen	ce Books:			
1. Ed	lward K. Wagner, N	Aartinez J. Hewlett, (2004), Basic Virology, Blackwell Publishing		
2. Fli an	int S. J., V. R. Raca d Control of Anima	niello, L. W. Enquist, V. R. Rancaniello, A. M. Skalka, (2003), Principles of Virology: Molecular Bi l Viruses, American Society Microbiology	ology, Patho	genesis,
3. Di	mmock NJ, Primro	se SB. (1994) Introduction to Modern Virology IV edi. Blackwell		
4. Al	an Cann (2001) Mc	lecular Virology		
e-Lear	ming Source:			

International Congress on Taxonomy of Viruses: http://www.ncbi.nlm.nih.gov/ICTV

				Course Ar	ticulation M	latrix: (Maj	oping of CO	s with POs	and PSOs)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	1				3	1	1	3			
CO2	3	1				3	1	2	3			
CO3	3	1				3	1	2	3			
CO4	3	1				3	1	1	3			
CO5	3	1	3	3	3	3	2	3	3			3

Effective from Session: 2020-2021										
Course Code	BS545	Title of the Course	Food & Dairy Microbiology	L	Т	Р	С			
Year	Π	Semester	III	3	1	0	4			
Pre-Requisite	UG in Biological Science	Co-requisite								
Course Objectives	To provide knowledge of 1 foods and their origin and microorganisms in food a microorganisms in fermenta	nicroorganisms (pro-te role; Knowledge of th nd gain knowledge al tion and to gain skills to	chnological, probiotic, pathogens and spoila, he factors that determine the presence, grow pout fermentation techniques used in dairy p control fermentation process.	ge) ass /th and / indu	sociated I surviv stry, rc	with val of le of				

	Course Outcomes								
CO1	Learn about fundamentals of food microbiology.								
CO2	Gain insight on spoilage of foods by microbes, microbial food poisoning.								
CO3	Understand the process of fermentation of milk and other food items.								
CO4	Assessment of food quality in reference to microbial contamination.								
CO5	Quality control packaging processing parameters of various foods BIS Laboratory services certification and licensing of food products								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Foods and their composition	Types of microorganisms with reference to food and dairy industry- Psychrophiles, osmophiles, halophiles, thermophiles, pH-tolerance and spore formers. Food spoilage - Causes of spoilage, classification of foods by ease of spoilage, Factors affecting the growth of microorganisms in foods. Chemical changes caused by microorganisms.	8	CO-1
2	Microbial flora & their spoilage	Microbial flora and spoilage of meat, fish and fish products, eggs, milk and milk products, fruits, vegetables, bakery products and canned foods. Canned foods: processes, advantages and defects. Methods of food preservation - General principles, preservation by use of chemicals, high temperature, low temperature, irradiation and drying processes, aseptic packaging of materials.	8	CO-2
3	Fermentation of foods	Types of fermentation, production and defects. Fermentation of pickles, butter, cheese, creams, yogurt and ice creams. Role of microbes and microbial enzymes in the fermentation of tea, coffee and cocoa and production of silage.	8	CO-3
4	Milk and milk products	Composition of milk, factors affecting composition of milk, Spoilage of milk and milk products. Milk borne disease, antimicrobial systems in milk, sources of contamination of milk. Chemical and microbiological examination of milk, grading of milk. Starter lactic cultures, biochemical basis of culturing dairy product, management and preparation of starter cultures, starter defects, probiotics.	8	CO-4
5	Food sanitation, Indicator organism	Detection of microorganisms in foods. Food poisoning and food infections. Food quality and assurance: Quality control parameters of various foods with special reference to microbiological quality. Importance of microbiological quality during food processing and packaging. Food borne diseases, their causative agents and control measures.	8	CO-5
Referen	ce Books:			
1. N	Ailk and Milk Produc	ts –Fourth ed. Clarence Henry Eckles TMH Publ.		
2. F	Frazier WC and West	hoff DC. (1988) Food microbiology, TATA McGraw Hill Pub. Food		
3. N	/licrobiology – J.De a	and De.		
4. F	Food processing: Biot	echnological Applications –(2000) S.S. Marwaha & Arora, Asitech Adams.		
5. N	AR and Moss MO. (1	995). Food Microbiology, The Royal Society of Chemistry, Cambridge.		
e-Lear	rning Source:			

				Course	Articulatio	on Matrix:	(Mapping	of COs wi	ith POs and l	PSOs)		
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO2 PSO3	
CO	101	102	105	104	105	100	107	100	1501	1502	1505	1504
CO1	3	1				3	2	3	3			
CO2	3	1				3	2	3	3			
CO3	3	1				3	2	3	3	1	3	
CO4	3	1		1		3	2	3	3		3	
CO5	3	1	1	2	3	3		3				3
BS545	3	1		1	1	3	2	3	3	1	2	1
			1 Low C	orrolation	2 Modor	ata Carral	ation 3 S	ubstantial	Correlation			

Subs

Effective from Session: 2020-21											
Course Code	BS546	RDT and Immunology Lab	L	Т	Р	С					
Year	П	Semester	III	0	0	12	6				
Pre-Requisite	UG in Biological Science	Co-requisite									
Course Objectives	The objective of this course is	he objective of this course is to develop the understanding of basics of genetic engineering and PCR.									

	Course Outcomes
CO1	The students will be able to perform chromatography techniques: Paper/Column/TLC
CO2	The students will be able to isolate and visualize plasmid DNA, prepare competent cells and carry out transformation and restriction digestion.
CO3	The students will be capable of setting up PCR reactions, blotting (Southern and Northern) and separating proteins by SDS-PAGE
CO4	The students will be able to identify antigen & antibody interactions by double Immunodiffusion: Ouchterlony's Method, perform
	Immunoelectrophoresis and Enzyme Linked Immunosorbent Assay (ELISA)
CO5	The students will be able to determine blood Group, Total WBC count and Total RBC count

Exp. No.	Title of Experiment	Contact Hrs.	Mapped CO
Exp-01	Chromatography techniques: Paper/Column/TLC	9	CO-1
Exp-02	Isolation of plasmid DNA from bacteria	3	CO-2
Exp-03	Size characterization of DNA by agarose gel electrophoresis.	3	CO-2
Exp-04	Preparation of competent E. coli cells and transformation of plasmid DNA to the E. coli cells	6	CO-3
Exp-05	Restriction digestion & ligation	6	CO-3
Exp-06	Southern blotting and northern blotting	9	CO-3
Exp-07	PCR amplification – demonstration.	3	CO-3
Exp-08	Separation of proteins by SDS – PAGE and native gel.	12	CO-3
Exp-09	To identify sensitivity of antigen & antibody by double Immunodiffusion: Ouchterlony's Method, Immunoelectrophoresis	3	CO-4
Exp-10	Enzyme Linked Immunosorbent Assay (ELISA)	3	CO-4
Exp-11	Determination of blood Group, Total WBC count and Total RBC count	3	CO-5
Reference	Books:		
1. Keith W	/ilson John Walker John M. Walker "Principles and Techniques of PracticalBiochemistry" Chirikjian "Biotechnolog	gy Theory &	Techniques"
2. Joseph	Sambrook David W. Russell Joe Sambrook "Molecular Cloning: A Laboratory Manual"		
3. William	n M., Ph.D. O'Leary Robert Dony Wu "Practical Handbook of Microbiology"		
4. Brown,	TA "Gene cloning: An introduction"		
5. Plumme	er David T., (1988), An introduction to practical biochemistry, 3rd Ed., Tata McGraw-Hill Publishing Co. Ltd. New	Delhi, 109-1	21
6. Talwar	G. P. (1983) Handbook of Immunology, Vikas Publishing Pvt. Ltd. New Delhi		
e-Learnii	ng Source:		

				Course Ar	ticulation M	latrix: (Map	oping of CO	s with POs	and PSOs)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1			3		3		2	3	2
CO2	3	3	1			3		3		2	3	2
CO3	3	3	1			3		3		2	3	2
CO4	3	3	1			3		3		2	3	2
CO5	3	3	1			3		3		2	3	2

3- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Г

Name & Sign of Program Coordinator	Sign & Seal of HoD

Т

Effective from Session: 2020-21								
Course Code	BS551	Title of the Course	Environmental Microbiology	L	Т	P	С	
Year	II	Semester	IV	3	1	0	4	
Pre-Requisite	UG in Biological Science	Co-requisite						
Course Objectives	To know and understand the role of microbes in biogeochemical processes within different ecosystems. The students will							
	learn the basic microbiolog	ical principles, the methods in	microbial ecology, and their theoretical and	practic	cal use			

	Course Outcomes
CO1	Understanding about water and air microbiology, biological indicators of pollution, bacteriological examination of water, BOD and
	anthropogenic pollution.
CO2	Environmental pollution: types, xenobiotics, genotoxicity, Mutation detection by ames test, bioremediation and toxicogenomics.
CO3	Recycling of organic wastes: recycling crop, human and animal wastes. Composting and vermicomposting; biogas production and waste treatment.
CO4	Knowledge about microbes of toxic environments, microbial degradation of xenobiotics, pesticides, heavy metals, acid mine drainage.
CO5	Understanding biodeterioration concept: biodeterioration of wood, stonework, pharmaceutical products, rubber, plastic paints,
	lubricants, cosmetics and control of biodeterioration.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Microbiology of air and aquatic environments	Microbiology of air and aquatic environments - Bacteriological indicators of pollution, Bacteriological examination of water, nuisance bacteria in water systems. Chemical and microbiological characteristics, Biological Oxygen Demand (BOD), Microorganisms and pollution problems and interaction with human bodies.	8	CO-1		
2	Environmental pollution	Environmental pollution: Definition, source and types of pollution (air, water and soil). Xenobiotic toxicity/ genotoxicity, Mode of action of pesticides, fungicides and insecticides; Mutation detection by Ames, microsomal assay. Bioaccumulation and bioremediation, Biosensors, DNA probes and their environmental applications, Toxicogenomics.	8	CO-2		
3	Recycling of organic waste interactions	Recycling of organic waste: Major sources of recyclable materials including agricultural waste. Key technology in recycling of crop residues, human and animal wastes. Composting and vermicomposting; Production and application. Role of microbes in composting and biogas production. Municipal solid waste treatment and management.	8	CO-3		
4	Microbes of toxic environments	Microbial biotransformation/ degradation of organic pollutants in soil. Microbial degradation and persistence of xenobiotics, pesticides, herbicides, heavy metals and radio isotopic materials. Pesticides toxicity to microbes and plants. Acid mine drainage, coal desulphurization.	8	CO-4		
5	Biodeterioration	Biodeterioration-concept, biodeterioration of wood, stonework, pharmaceutical products, rubber, plastic, paints, lubricants, cosmetics, control of biodeterioration	8	CO-5		
Referen	ce Books:					
1. En	vironmental biotechnol	ogy (Industrial pollution Management).Jogdand S.N., Himalaya pub. house.				
2. W	ater and water pollution	hand book, Vol. 1, Leonard L., Ciaccio				
3. Ec Eldowney S, Hardman DJ, Waite DJ, Waite S. (1993). Pollution: Ecology and Biotreatment Longman Scientific Technical						
4. Gr	4. Grant WD, Long PL. (1981) Environmental Microbiology. Blackie Glasgow and London					
e-Lear	rning Source:					

				Course Ar	ticulation M	latrix: (Maj	oping of CO	s with POs	and PSOs)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1				3	1	1	3	1	3	
CO2	3	1				1		1	3	1	3	
CO3	3	1				1		1	3	1	3	
CO4	3	1				3	1	1	3	1	3	
CO5	3	1				3	1	1	3	1	3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21							
Course Code	BS552	Title of the Course	Commercial & Applied Microbiology	L	Т	P	С
Year	II	Semester	IV	3	1	0	4
Pre-Requisite	UG in Biological Science	Co-requisite					
Course Objectives	The aim of this course is t humankind.	o impart the knowled	ge of basic principles of Microbiology a	ind the	eir appl	lications	s to

	Course Outcomes
CO1	The students will be able to discuss the biotechnological application of microalgae.
CO2	The students will be able to explain the production and significance of biofertilizers
CO3	The students will be able to compare genomes and proteomes of different microbes.
CO4	The students will be able to describe the production of single cell protein and its merits and demerits.
CO5	The students will be able to explain the application of microbes in industrial production of in antibiotics, alcohols etc.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Microbial Biotechnology	Microbial Biotechnology - Definition, Concepts and history, biotechnological potentials of micro algae – food – feed – colourant – fuel and pharmaceutically valuable compounds.	8	CO-1		
2	Production of microbial biofertilizers	Production of microbial biofertilizers–Cyanobacteria, <i>Rhizobium</i> , <i>Azotobacter</i> , <i>Azospirillum</i> , <i>Phosphobacteria</i> and vesicular arbuscular mycorrhiza.	8	CO-2		
3	Microbial Genomics & Proteomics	Microbial Genomics –whole genome analysis –cDNA microarrays and microchips. Proteomics— multidimensional protein identification technology, DNase Footprinting assay, Yeast two hybrid system	8	CO-3		
4	Production of single cell protein	Production of single cell protein - Microorganisms and substrates used, techniques of production, nutritional value of single cell protein, economics of production, merits and demerits of single cell protein.	8	CO-4		
5	Industrial microbes and their productsIndustrial microbes and their products: A brief idea about the products obtained from microbes – biology of industrial microorganisms such as Streptomyces, yeasts, Spirulina and Penicillium – commercial production of penicillin, ethanol, vinegar, vitamin B12, Protease, citric acid and glutamic acid from microbial sources – production of commercially useful non-microbial products					
Referen	nce Books:					
1. Bal	asubramanian D, Br	yce CFA, Dharmalingam K, Green J, Jayaraman K. (1996). Concepts in Biotechnology University Pre	ss, India.			
2. Boi	rowitzka MA, Borov	vitzka LJ. (1989), Microalgal Biotechnology, Cambridge University Press.				
3. Doo Nev	olittle RF. (1990). M w York.	Iolecular evolution. Computer Analysis of Protein and Nucleic acid Sequences Methods in Enzymolog	y. Academi	c Press,		
4. Gei	bardt P, Murray RC	, Wood WA, Kreig NR. (1994) Methods for General and Molecular Bacteriology – ASM, Washingto	n D.C.			
5. Gla	zer AN, Nikaido H.	(1994) Microbial Biotechnology – Fundamentals of Applied Microbiology				
6. Gli	ck BR, Pasternak JJ	. (1994) Molecular Biotechnology, ASM Press, Washingon DC.				
7. Dei	nain A.L, Davies J.I	E. 1999. Manual of Industrial Microbiology & Biotechnology. ASM press.				
8. Mit	Mittal D.P. 1999. Indian Patents Law. Taxmann Allied Services (p) Ltd.					
9. Sik	yta B. (1983) Metho	ods in Industrial Microbiology, Ellis Horwood Limited.				
10. Sta	nbury PF, Whitaker	A, Hall SJ. (1995) Principles of Fermentation Technology, Pergamon Press.				
e-Lea	rning Source:					

				Course Ar	ticulation M	latrix: (Maj	pping of CO	s with POs	and PSOs)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	1				2	1	1	1		3	
CO2	3	1				3	1	1	1		3	
CO3	3	1				3		1	1		3	
CO4	3	1				3	1	1	1		3	
CO5	3	1				3	1	1	1		3	

Effective from Session: 2020-21							
Course Code	BS553	Title of the Course Pharmaceutical Biotechnology		L	Т	Р	С
Year	П	Semester	IV	3	1	0	4
Pre-Requisite	UG in Biological Science	Co-requisite					
Course Objectives	This course enables the stud exposed to the insights into monoclonal antibodies (mAl conjugates-based drug deliver	ents to learn the various various therapeutic Bs), peptide based the v and various factors af	us aspects of pharmaceutical sciences. In strategies against infectious and non-infe rapeutics, liposome/emulsion-based drug fecting the drug delivery, its release, and ab	this co ectious delive	ourse, s diseas ry syst on	tudents ses i.e. ems, P	get via EG-

	Course Outcomes
CO1	Understand the principle of monoclonal antibodies generation, their mode of action, and their application in targeting various diseases.
CO2	Formulate therapeutic proteins and peptides, their encapsulation with other macromolecules and implications in drug delivery.
CO3	Prepare lipid-based drug delivery systems as well as PEG-conjugates for fast drug delivery and release inside the body.
CO4	Develop the strategies of pulmonary drug delivery.
CO5	Apply the knowledge of polymers for production of biopharmaceuticals with controlled drug delivery.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Monoclonal antibodies	onoclonal antibodies: applications, generation, recombinant tibodies, production methods, Pharmaceutical, regulatory and commercial aspects.						
2	Formulation of proteins and peptides	Formulation of proteins and peptides: making small protein particles, precipitation of proteins, quality control issues, multi-phase drug delivery system; Preparation of collagen, gelatin particles, albumin microparticles.	8	CO-2				
3	Proteins and phospholipids	Proteins and phospholipids: structural properties of phospholipids, injectable lipid emulsions, liposomes, cochleal phospholipids structures; Polymeric systems for oral protein and peptide delivery.	8	CO-3				
4	Pulmonary drug delivery systems for biomacromolecules	Pulmonary drug delivery systems for biomacromolecules; Lipid based pulmonary delivery; Solid colloidal particles; Polycyanoacrylates; Poly (ether-anhydrides); Diketopiperazine derivatives; Polyethylene glycol conjugates; Factors affecting pulmonary dosing	8	CO-4				
5	Polymers used for controlled drug delivery	Polymers used for controlled drug delivery: Hydrophobic polymers poly(esters), poly(cyanoacrylate), poly (ortho esters), poly (phosphazenes), Hydrophobic polymers poly (alkyl methacrylates), poly (methacrylates), poly (acrylates)], alginates, chitosan, polyethylene glycol. Gene therapy: the current viral and non- viral vectors.	8	CO-5				
Referen	nce Books:							
1. G	roves MJ "Pharmaceutic	al Biotechnology", Taylor and Francis Group.						
2. Ci	2. Crommelin DJA, Robert D, Sindelar "Pharmaceutical Biotechnology".							
3. K	3. Kayser O, Muller R "Pharmaceutical Biotechnology".							
4. B	4. Banga AK "Therapeutic peptides and proteins							
5. W	5. Walker J.M. and Gingold, E.B. (1983) Molecular Biology & Biotechnology (Indian Edition) Royal Society of Chemistry U.K							
e-Lea	rning Source:							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1		1		3		2		2	3	
CO2	3	1		1		3		2			3	
CO3	3	1		1		3		2			3	
CO4	3	1		1		3		2		1	3	
CO5	3	1		1		3		2		1	3	
			2 I ow	Correlation	. 2 Modor	ata Correlat	ion. 2 Sub	tantial Car	rolation			

3- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2020-21									
Course Code	BS514	Title of the Course	Seminar	L	Т	P	С		
Year	II	Semester IV 3 1 0							
Pre-Requisite	UG in Biological Science	ence Co-requisite							
Corres Obiostinos	The students will be able to summarize and present the existing data related to a specific topic in the form of a								
Course Objectives	report. Every student will present a seminar on a topic related to theoretical or experimental, advanced topic.								

		Course Outcomes
C	CO1	The students will understand and interpret latest advancements through different technical papers, reports, Journals, Data sheets, books etc
C	CO2	The students will inculcate the skills for literature survey and will learn to manage resources effectively.
C	CO3	The students will be able to summarize the recent research and technologies in the form of review and will be able to deliver power point
		presentations on an assigned topic.
C	CO4	The students will be able to communicate his/her ideas with his peers as audience, which will enhance both oral and written communication
		skills.
(205	The students will be able to create interest to pursue lifelong learning

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	2			1	2	1	2	3		1	3
CO2	3					2		2				3
CO3	3	2	1			2		2			1	3
CO4	3	3	3					2	3			3
CO5	3							3				3

Nome & Sign of Program Coordinator	Sim & Soal of HoD
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21											
Course Code	BS515	Title of the Course	Project Work	L	Т	Р	С				
Year	П	Semester	IV	0	0	12	8				
Pre-Requisite	UG in Biological Science	Co-requisite									
	The main objective of this course is to develop independence in experimental design and interpretation and to										
Course Objectives	develop research skills. To promote education and research in biotechnology and provide academic and professional										
Course Objectives	excellence for immediate pro-	ductivity in industrial,	governmental, or clinical settings for an	ultima	te bene	fit of					
	society and environment.										

	Course Outcomes							
CO1	The students will be able to perform literature review, identify state of the art in that field.							
CO2	The students will be able to define the problem and develop synopsis of a defined research problem							
CO3	The students will be able to establish a methodology using advanced tools / techniques for solving the problem including project management							
	and finances.							
CO4	The students will be able to prepare the research report and its oral demonstrations.							
CO5	The students will be gain practical experience in project management in biotechnological industry, be able to use various techniques in							
	contemporary research for project, perform numerical analysis and interpret the results							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3					3	1	3	2	1	3	3
CO2	3					3	1	3	2	1		3
CO3	3					3		3			3	3
CO4	3	2				3		3	2	1		3
CO5	3		2	3		3		3	2	1	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD